现在时间是:
当前位置:首 页 >> 语言基础>> 文章列表

Python 四步掌握机器学习

作者:   发布时间:2016-02-27 07:43:14   浏览次数:5886

在Python中学习机器学习的四个步骤

1、首先你要使用书籍、课程、视频来学习 Python 的基础知识

2、然后你必需掌握不同的模块,比如 Pandas、Numpy、Matplotlib、NLP (自然语言处理),来处理、清理、绘图和理解数据。

3、接着你必需能够从网页抓取数据,无论是通过网站API,还是网页抓取模块Beautiful Soap。通过网页抓取可以收集数据,应用于机器学习算法。

4、最后一步,你必需学习机器学习工具,比如 Scikit-Learn,或者在抓取的数据中执行机器学习算法(ML-algorithm)。

1.Python入门指南:

有一个简单而快速学习Python的方法,是在 codecademy.com 注册,然后开始编程,并学习 Python 基础知识。另一个学习Python的经典方法是通过 learnpythonthehardway ,一个为广大 Python 编程者所推荐的网站。然后还有一个优秀的 PDF, byte of python 。python社团还为初学者准备了一个Python资源列表list of python resources。同时,还有来自 O’Reilley 的书籍 《Think Python》,也可以从这里免费下载 。最后一个资源是 Python 用于计量经济学、统计学和数据分析的介绍:《Introduction to Python for Econometrics, Statistics and Data Analysis 》,其中也包含了 Python 的基础知识。

2.机器学习的重要模块

关于机器学习最重要的模块是:NumPy, Pandas, MatplotlibIPython 。有一本书涵盖了其中一些模块:《Data Analysis with Open Source Tools》 。然后免费书籍《Introduction to Python for Econometrics, Statistics and Data Analysis》,同时也包括 Numpy,Pandas,Matplotlib 和 IPython这几个模块。还有一个资源是 Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython,也包含了一些很重要的模块。以下是其他免费模块的相关链接: Numpy (Numerical Python, Numpy Userguide, Guide to NumPy), Pandas (Pandas, Powerful Python Data Analysis ToolkitPractical Business PythonIntros to Pandas Data Structure) 和 Matplotlib books

其它资源:

3.从网站通过API挖掘和抓取数据

一旦理解了Python的基础知识和最重要的模块,你必需要学习如何从不同的源收集数据。这个技术也被称作网页抓取。传统的源是网站文本,通过API进入twitter或linkedin一类网站得到的文本数据。网页抓取方面的优秀书籍包括:《 Mining the Social Web》 (免费书籍),《Web Scraping with Python》 和《 Web Scraping with Python: Collecting Data from the Modern Web》。

最后这个文本数据必须要转换为数值数据,通过自然语言处理(NLP)技术完成, Natural language processing with PythonNatural Language Annotation for Machine Learning 上面有相应的资料。其它的数据包括图片和视频,可以使用计算机图像技术分析: Programming Computer Vision with PythonProgramming Computer Vision with Python: Tools and algorithms for analyzing imagesPractical Python and OpenCV ,这些是图片分析方面的典型资源。

以下例子中包括可以用基本的Python命令行实现,有教育意义,而且有趣的例子,以及网页抓取技术。

4. Python 中的机器学习

机器学习可以分为四组:分类,聚类,回归和降维。

“分类”也可以称作监督学习,有助于分类图片,用来识别图片中的特征或脸型,或者通过用户外形来分类用户,并给他赋不同的分数值。“聚类”发生在无监督学习的情况,允许用户在数据中识别组/集群。“回归”允许通过参数集估算一个值,可以应用于预测住宅、公寓或汽车的最优价格。

modules, packages and techniques 罗列了 Python、C、Scala、Java、Julia、MATLAB、Go、R 和 Ruby等语言中所有学习机器学习的重要模块、包和技巧。有关Python机器学习的书籍,我特别推荐《Machine learning in action》。尽管有点短,但它很可能是机器学习中的经典,因为它提到了“集体智慧编程时代”:Programming Collective Intelligence。这两本书帮助你通过抓取数据建立机器学习。最近关于机器学习的出版物大多都是基于模块 scikit-learn 。由于所有的算法在模块中都已实现,使得机器学习非常简单。你唯一要做的事就是告诉 Python ,应该使用哪一个机器学习技巧 (ML-technique) 来分析数据。

免费的 scikit-learn教程 可以在 scikit-learn 官方网站上找到。其他的帖子可以通过以下链接获取:

关于机器学习和 Python 中模块 scikit-learn 的书籍:

接下来数月将要发行的书籍包括:

机器学习相关的课程和博客

你想要得到一个学位,加入在线课程,或者参加线下讲习班、大本营或大学课程么?这里有一些关于逻辑分析、大数据、数据挖掘和数据科学的在线教育站点链接:Collection of links 。另外推荐一些在线课程–来自Udacity的Coursera 课程:machine learningData Analyst Nanodegree。还有一些关于机器学习的博客列表:List of frequently updated blogs

最后是来自 Jake Vanderplas 和 Olivier Grisel,关于探索机器学习的优秀 youtube 视频课程

机器学习理论

想要学习机器学习的理论?那么,《The Elements of statistical Learning》和《 Introduction to Statistical Learning》 是常常被引用的经典。然后还有另外两本书籍:《Introduction to machine learning 》和《 A Course in Machine Learning》。这些链接包括免费的PDF,你不需要付费!如果不想阅读这些书籍,请观看视频:15 hours theory of machine learning

本文由 伯乐在线J.F. 翻译,renlytime 校稿。
英文出处:lorenzibex

 







上一篇:没有了    下一篇:没有了

Copyright ©2018    易一网络科技|www.yeayee.com All Right Reserved.

技术支持:自助建站 | 领地网站建设 |短信接口 版权所有 © 2005-2018 lingw.net.粤ICP备16125321号 -5